- Ex A’:lF. | tdﬂl A=C) | :_

Plgebre de Lie: | le 18.09.19

Rem:  Sophus kie  (Nerway * igs0)

Lie %raups = Lis a.!«acbras

Basic notions:

De{: An algebra. (over a 31‘3:& F) is o vector space A cqm.‘p:&
with a muitcpucab‘an : et AxA = A which is o bilnear
(A bilin : {of.aé)-? = actatsi = a(_.!:ca_) Yoaef , :c,"té €A

(2 + 3). 2 = >Hy, x.tg__-r' Z) ix.g + x2 \?.5:.3,1. eA)

;‘x&, G-) an aJac.bra,.A (s commutative if.xg ='aa= .Hx.ae A

By an olgebra A s asociative o lzgre = xlg2) YxipzeA

n

Ex;, | Az Hak(a, &yl d [ A-S.]-E- .Z___H.-' LA 6"-,} _is not commut, but

associabive

Ex: A= Mat(n,C) , AxfB = A8+ BA  (obw bilincar)
it is commutabve. - |
(AxB)*C = (A6 +BARC = ABC + CAB + CBA * BAC
[ Ax (BxC) = ABC + BCA + ACH + CBA | non -asscciakive

'.DéUP, A lie a.I%e.bru,. (over o a%.ld F) is an a!?cbfa avcf IF

with & inuLthLCca.ﬁ‘arL. L-_,‘_]. such  thak :
T ST REC S vx'-..g eA | /

W __[Eac;_ai*%] + L[od..i.'],__ac.j + LL-t,ac_J._.g_j _',-._...o May2 eA

( t'ﬂc .Jambr‘ .Cdcm‘:.'l'a( J



’Rﬂm | d._ LA (lie q]qe.brc:.) & net .wmmul.:a.tfvﬁ (tn gc.n.::.mi)

([Lm;g].a].' [a-—;tta.aﬂ : [La:»g‘i,a] +[t¢dllal-,x] = -I_La.x].g]') .
_and '::s. hat. .a:soci‘atiuc- (cnsmcra.lg J. | |
Tho 4 Ia’ chor TF #2 , fhen 4) = 1Y) [xx] =0 VxeA
;Eqa&‘ & 0F [:c.+a %+ «a] = L'::,ac'l-rf.q'.a'.l ® I::.:-ug:l +E3..ac‘.1 .
e T G [ T[T
A 'kq.ﬁc"'_3="ac.. [=,] = =[x,%1 & alx,c]l =0 =9 [=xl=o
"E"”T':' (v:ra tnivial case ) .I
A is any vector space witfh L=14l= 0
CMm2: ...(vcra important case )
det Al belan a.s:som.l:m: cu-aabra. (it - ) AN A-bc the same
_Veckor SPOLE w-ilﬁ. [== ;.3] :.-"I.-:cla -_Hﬁc. Tﬁm 1_4': is_ e LA,
2;% L1 s o biknear aperation :
|| 'Lux}n_j_]_ =| _c(,aﬁﬁ - ey = .df.a?-:_!a] .
| ”[3"5‘._‘31_9-_] =Ll t=lzal ga - 2 %za = [x,2] + [4:27
1T Lcd.x'] = aac.—:cca = :.-_(_x.H- a:x._.) = L I..::la:l
[[x\“.ix.z] |x3] = prxz = .xz.;l. 4,'.\':3] = .x|x2.x3 = xzx|x3
. | . Lz |3l 2 | gl 3
i 76 HL-PRE J. - N
A Jr .2 4 . F byloal Bl
[_Lac;..bc_,,:.'liac.] = F | 23) [=|({33 = |2& ‘1’:2'3.
e, sbed [ 2 T (= Ielajol Jaiot} 2aalelign [ [ ] [
V-
_and  Hhe | sum OJ’ them. =0 | | Jacebi L‘de'a.tif'g jcr [..1
_ _ _ | _ a -~

| P 2



Alacbm cha | Ltk ; 7 | 14 le 19.09. 19

|Ezlt"

£

.l "

 Dep.

Ren.:.

.A.= Mat (n, C) . Han | La:ua'] T xyi- ﬂac (s tRe commutater

.}'}G.HL

AT = %L (n,C )= +ﬂ;amrm_.uncm.¢19cbra . )

det A be o LA A subset EcA is o basis. Q: A if every x€A is
.u.m.'quelg repressenteq as x = ;,«Ni &l ) & € s

card (E) = cum A.

-4 FIbRA e . 1°2) e
Az gl2,€) cuzlee o) | e rlilo) & =loy]

E= '{e."._c.:; ®al Caal ﬁ is c.basis qf’ A.

dim. (g+(2,€1) = 4

d
A= glin,C) a‘m;[aL(n.C}) 2 In ey = |— f C=r

[ I ) L | o1 O
[eg.cenl = ckjcgm cgm_eq = dh @iy - dl e:&J

Lo | Abe o 4] ;;:==e e en be o bassis of A Hen
[ﬁlch] = .2: c :'_".E _ o l:ﬂe..:dsg_cnina relations of ;4_*

{chE% laab tﬁe_ sbfuctur:__;_cammts qfﬂr

({x.raeA I:Re.n. x = z _die an.d 4 zJ_éﬂ.JcJ'
Eac.ah z 2 ol B [e,.ch -ZZZ oqp.J ciJ e

L=1g%!

Suboigebms:

Loc| A belol 1Al [ A Uatede ‘sut:sm. BeA is a Lie sm:'a;.

%gA LJ? [, ca] e b Vx'..ﬁ eB (ie: B is closed mmmtt‘a.i.,...

(Trivial)

lAtls la| Liw ..suba.kac_bro._ of A et is a Lie suba.lcacbm of A,

1)



" LnJH f_xe .4 fﬁan. 8: spa.n.t::.) :-'-{.ldG.A |l Ad - ou—: IF‘[ | |5}
'y Ls o le ! s«:balta:bra a&’ A ba:c.usc. _
a.na, P ?: Hen .ld, ®x and sz soyx  so E‘d"jll = o1 [x o) =0 eB

B A= gting) , bYr{x e‘a““ el mu- o i w“ (\/)

bt s a ue _suba.l%c.bm._

Hem: TeX= 3T X XY = Z (X¥Y)i 2L &' X Y =24
T Ll gme | i | e gt W J= i ko
3%&. 1L _'_G._.__a.l.-tn-.d:-) | T = c_f = .sE_LLh.C-E.) - the spcc::dL Wnear a.lacbra.

'_Qem. stin,C) s a Lie S«.iboJacbra-oa"_ .:al..{.n; C.J.__._ .
149 x.y e sL{nC) then TE.(dx-fﬁ.g}.: _otj'_ﬁ'_._:&__*_BTrg =0
3 sLin,C) is a veckor subspace of %L_{_n_.c..)
Bl if = y € siL‘tln.tIZJ tRen Te [.:r.;-dJ = Trlxy -y
B ﬁixcd)' - T:r[.(dx)_ =0 | =& SL{n,C) s o kic Subalgebra..
Ex: sL(2,0) , e canonias bosis: <= (aa) | §=(73) R=(32)
LTelgal=l (8] | | Irh el [al2e! '”"Lﬂé'.f_l - -__zg.]_

_ Ex; Teen sLI2,C) Rave o 2 -aim Submac.hm. 7
I Yaplt] [0 = span(R,e) o B= span(h, f) |
becouse| | [R.el= (26 and | LR.§J = -2f

E" SL(n.C)  a basis: ey , i7)j |, Dim sn,C) = atta

}
I ] - A P . - ' o q‘
ancl E" = B¢ = el“l‘hf‘*f =i la=1 | _(-lo‘- ) | ( ‘—'g?, \ | ‘k _|'|‘ 3
I T — | i .ﬁ "O



le 25.09.19
_l_\_l%&bfe de lie:

The center i 4 Mi qoe | Lo fenk BLI(n, @) ek |

L('L@) [tl

Def: et A be a LA, then Z(A) = xeAl nglm.vaéﬁ i Lhe cenrer

Thwd« Z(A) rs a subaigebra of A.
}P@&, ket x,x, € €(A) , then [oxx(txx, (‘d] = O;’l[z-laj + P‘z[-"'-ﬂ#j o
= 2(A) (s a vector subspace . |

[oe, .:x:_,,'.l. = 0 € £(A)
A

Thm 4 mZ(aL(n.@)) = Spani{E} = {x'd'ﬁ'lrxe CY  Eus the k| miadiee

) 2UsLin, €1) = {o}

P B ‘lr x € Z;(aun,ﬂ:l) then Lﬁ:,c:’:’] To (DN epx = xey

S ey o= XSy =0 (“";""').( x)(’""“‘;‘) = @zzﬂ]i_“f}

2 xi =0 1{ ﬁ.-'ﬁd' e :ct.'sad.xb.gomt magriac
n

x = Z ogei |, Lx,cp l=0
(=

=) La:.,c:‘m_? = Z _q’,' Lag, "—'Em-J = ___Z-_ naf,' ( cr.'ég - Ce Ly )
i | Vﬁ.,m
= 2.‘ ) ol (d;ﬁ e‘m m‘- cce ) : =ME ﬁg = mim = o 5) NE

#:x:-ocZe:.,,:«E'

b) lee sc e Z(suin, @) D xeZElglin@))  _, Tey' =
r.bcccwae. of yeqglin@) alfyl- 1, el il g
‘d %.Ln.. ) L then 3 1& - rg +'.-1- a
f.a:ua] = C:’:.g‘] + [h‘-‘-; ,i.Lu‘:naE-.l = ;.xla'l +a = Q
3 Z(SLnC)) C Zlglin.C)) -

— a'c st(n.C)) =0

pS



Defi A LA is abclian if A =A
Exy An.g (- climentronal LA .

txi B {= eguner | wy o o ixf]

Tﬁn}ﬁ:._ o?fel: A be o 2-cm'n LA, _i“?ncn- cn.hﬁ’.uAas a.h:unn. or thare c:cds.bs.

o bass of A Erjeancal st Llenerl=co

Baof: det & ={c..4e.;} be a basis of A then | Le,c.] = e, + feg
EREYP P | I - |
lor cither azo or pro . suppose o
Tafe e'= &-'-152_ 8y = dle + ﬁ_é_,_ then. E'Q{_c:;‘c;;‘j- s a  bascs

| Le el = e
_ a

’Reu Iﬁ A is Q-dim T.C.,:c:,]?c'..z |
P B W T T T TP S O S e

tnen  Z(A) = {o}

jnd ey bs | HENS ""-roml.i‘c. a.ra.aﬁs to_kic_algebras:

M: A .gc:uE s 'lau et | & wekh an lopecmtion e : GxG — & sueh thal

Do(Grg) gy T G lGiigs)  Vgug..q.e6
TR eeG st “.}:_-@ = gerq Yel

3) LJ? G ,. 3 9"6 G sk ---‘3‘3?'5 _%"'% =& |
Def A svbgup of o gow 6 4 a sbset HoG st gogue Ve,

E;J, éLfﬂ,Ch{?_e Hal:tn..__C_i | | du:«a 10% the caencml lincar %raup
_GL'@(n,CJ.?.{ 3 € Hak (n, €1 | dek 8.).0_"; _s.ubca_fouh of GLin,C)
| ]%__e_ _Ho._!;_..tn,__.til ok % coly nat a group | |

.SLln.,_C)z;{ g€ Hat (n, €1 dut q = 1 § grovp.. ( special . grp) p.C
Stin.C) € GL*(n,C) € GLIn,C) .



Negor a. bie:

B B . lel5.0.9

Rem: The 'a%ncu‘.nn. B0l + Hat(n,€) = R %wcn. by u%u = max I9ajl 1s

Def,
Def:

Be;

Y -

1 araup I .

MJ
a notm on Hat(n )

Lt {gaf 7 < Mat (n, @) then 3,,"3?_3 i Iga- g i 5

A M—H.L@_LQ s a 5ub3raup f GLfn C) such that 4-{3 1{’"'
and | 9,,-—--93 then edlther .SG.G or de.t'3= a...

:SLInI;EI.) r‘: a Lma.tn.x Lie 9rodp..

(Lfd:.f:a,,-l dnd 3,,

ﬂ-—!ﬂ)

'fanah.an.) HEERENE

__then d:.éca =/ ;baca.bsc det (s a conlrnuous

GL*n, @) s o matriz Le ﬂm

(:.'f dxtg“)a c:.nd 3-—'3 then d.r_._!:__a)a or cutﬁ o)

|Gl '{%EGL(H,[R.)' 3‘1 e @_} ik's a caroup but not a matrix Le

gel:....ac :e. Hé.tfn...ﬂ:.) then e i *'-‘_‘é.. s o converca:n.l: serie
_'°__

By (Hak(n @), H.lly) is o Banach spoce

E

et A6 € Hab(n.C) , then [A-BIl, ¢ n KAl4HBIG

S =i ¢ E-ruuﬁ_, | Lu:ana PR s_ﬁ | Ed ali=u
e. K= o m ]
Mgm-g,,u = HZ -E'—, ¢ ’2"" (n u.w.u)f %f_______,a
=8+ g EHS‘H . .n g i1 y S = oh

- |
D 43“" ’m-:: 5 a .Cﬂuch# —sequence

a
PN R R TI A kA |
. e M B
48 e Hat(n,€) st x'= s/ __n'_'rf__.\n..)._ﬁ ~' and then xgz S[ o;\:) Is !
AE * ] | (J\;;) - ! &) =
1SR BRI 8T ek [al kd A ETe g 7, 2 N0 g
i Ay ' '1\1 |
=8 (c'l'.:, *A ) ST d.«.l: (ac) = | au..l:[ = :A )‘—= c.A-'-..,-c%" pa
o " 3y Tix

= & = ]



Rem:| |k | | (1+2)" = e | yes
' T m= 00 m | N

ThmG.: et a:.ta ¢ Mat (n.C) , tRen

L& m x +y S
al le® c'"g) Tt = [ Lie produce dpamul.a]
r - /mg. =2 E4lle 4. lYmae .i‘mg L not
. m e e = E+ n’% (2 q_g_’ 4. cadnt | reluark
c ma = E & # 3 4.”.- _/n Bl b s f'
(5 [ T p e H'J

by &= 9 a8 + 1 L=iyT s gl=icmigT) o fyrt=gi
commutatar of R ;‘u.r crdcr._ LH"G Baucr- E’ampﬁctt Ha.u.sdc..'!r“ ormula]
¥4 _ | [R.CH]T w |
E.x.al =y - yx [ N

x+y +k [x19] mfg,c%[zas-l
= &

Rem.:. of L-.x;:..&cugi:. = Ly r?._a;..lg-ii =0 thn c7eis e

Déf; et G < GLING) be o matrixe Lie gp , ke GLO) ={xeHot(n,C) [ E 6V LR

s o Lie algekra of the ki _%rmp G.

INEE e o219

Tmd:  GO) equppea with bhe map L[,.]: gca)xgm = GlE) 45 a ke
a!ae.bm. over IR, L’ (-1 ‘3‘1 | Jed - Yoo
| | | CEsee) | (e:s)x

M N;{xa%(ﬁ] o.u.d seR then e = e € G oy
gus) cb/’_“’_‘f_ /m'*" eCG VeeR,melN
> 3 el Ml
c.t‘"“d' | m-’“ 8 elGl | | Lldad d ma.tna: e aru.:p
3 xry € gm) ) = T

B x4l = xg-yx sabsfen the Jocoy mh-a-ﬁ,
but we Rave to show  thak L.yl e.Ca.(GJ |

bonwa i Lf x € g(G) o 356 Ehew caacc& %LGJ

& | oS . ZMO__E:.‘ lgxﬂ = ge 3"' e G | '._



R , — , S e 02.l0.9
ﬂaé’bn: de e : |

Boof: (Suire) N |
Bl xige G My Ty ) ¢ GE) WeeR

LT aad ™k ) (G) ‘ b vegir
R ’ = ‘5 - L spee e

-mlu EE*.‘:::.* )g(sgm "9]’

[_3 + &:m# tﬁ" 34—0:&1] - r.ac;gJ

e-m
| = .E::-cal e ng) | | ol 7]
Rem:. -LJ x e 9(6) bhen. 6. f?:_a_le_a?&:é?,..‘:sﬂlﬁ:ﬁa anc - parameter
m:p oé’ G. | | 1]
- Mﬂ B P 9 ' S Y B S
= Tholeed : 3 %2- a | & = e

: el g L P Ex -fx
.%f 9= cb_'_ khen ta"=cbx [ L s = £)

ax
anel E_c.

&l |

Ex; w G- { (“' b) ' abeC, o.;m} & 3"“9
- 81 %3 '= (:TJ[ ) =( ) : a"'(l/q' b/-‘-L) c

I

Gl A lwdtetoe! e oup..

1 et Bu:f LT
| € 9(6) (=) :.t . '_( al | | ) VEe R

O L L X, =0
L dedecle | 4 .g’ tro ez Ewbe 1. ;__(1-;&::., f ) #{ i

€xy, '-f'*-’.'x:z : x2£=°
we fave a ma.ssa.r.g cmd.:.han.. ‘far x e QIGJ

&’s a.{ao a._%ucn,e amdu:can. _: | |
i T .S P NI PR I3 S
L Bud ﬁ_! | ||



21 6= GLn,C)
- Ex - T Ebrae

* € %(G) @ el e GLinL) @ d[elT) =€ 4 0

tua G(6) = glin, &), | [ [
3) G- GL*n,€)

b e & brse
x € 9‘(6) (=) e €6 & dikle " ))a = & >o
& txeR
Thus 9[6)={x_ e_gi.m,tlf) / fr.-né:ﬂ} sl a mmr:pnmmr R

}_ﬂ‘ G = SL(m@) - !
E bree

xécéfG) &= c&xe_G o et 5Tz e Ll
@ brx =0 |
TRua  GUO) = slin@) L (by aefmisen)

8) G= O{n1=={3e Gl iRy | %Tfa =EV - the orkhosoﬁa.l qretp |
( 31' 5 the Eranﬁposed. matrix ) | |
tx= i bl =txT

xeg(G)@) e eG & ct.x-c' =€ VeelR & ¢ =g

» sufficient conclbon xT=-X

Rew - (e.’_)_r;'_'(%a%-f)r- % (=97 e | |

[ B B
Ares albe a nmssa.r9 condibion. : |
tra .E.f;..l:xr.*.,.. = F -fx4.... 3 x' =-2x

TBuo |, glﬁl ={::e 3L[nsml| xT+ x =.°ll. anﬁ-sgu mhx

E:.m _ ..:.3 2,4 olre. a.nln.-sam watricad .,.bhr.n.

fl'.x..»idl) r (xld. & 3.1:.) T = g"'.acr - Jcrddr | =-{-JH}[-.:\=_)' {-x.)(,-.g)

-E.::.,g] =) .[xud] 45 anbf-sam.,

plo



le_02.40. 49

ﬁlaébrt. de Hie: .
R JG)F .S.Oﬁ‘n = { 3& .SLln.ﬁll.__l...a"l- a = E ,T " Ehe .spcah.l. ortho. ﬁ'ra.:p.
x € GSom) @ e Owm ond auk (et = | | |

/o ] L

XxT+x =0 bre = o

_____...__.kﬁus____.g_[Sd:m) J e.ﬁo;nl = ocn)

_:h.e Auu.'tafy ?mﬁp.. |
4 m={gecLiner| g*g=ef (ﬂ’ = g"’ = & )™t = &=
L xegm) o e Ml e (=) ¥ E veer
Bl £ H b % 4 o A T & iy
1 a-.s-ug:.‘c..c?nt condl. ¥ x¥ = -_x:
- PIPIP S R P )
ol tro: _ é' ..tl-x:."‘?f..... 1| Elek - L x* -
_ Thue - _.a-:x.tm;--{..xe”alt.n,d:l.l_ | _,:'c."'-rx---ok ant:. -H.:mt.i.h’én; matrae
=<5 Q. n;al... LA, {zd" ;.x.'*= —.x:_.,._f:h..c.n_. Q:a:)":__: —ax*= o )
FBJ SU i ={% € SL(n}.dZ.l l 3" 3 P .E'r the spccm.f. ml:mg qrp
| x e g(Su.m.l;) (o (== ¢ Sithn) b x*le belba had |delzh
Thus  su(ny ={== e sl(n,C) 1 x*+oac =Icz'i'._'
'P\am- | _..Sx;lﬁ) c Am) ao c;. e &ubaiﬁcbm.

P-H



| | e 09.10.12
Derivation -

Daf, ok Vbe a vecter  space (over o. Feeld [F) then  End(V)

s the set a‘f al  lnear maps a%m V ta V.

Rem: @) EndlV) «s o veckor space | tf we sek (¥ +RYIV = xYwi+BYIV))
| by End(V] 4s an assoccaotive dkacbra.. .cg. the mulipucation
LI ..ﬂi.‘vca bnd the com_pa.sct:ba of maps Ve = Yo @
@ (End(v)) " = gltv) s a s . oiqebm. (Lf the Lie bracket
s YWl = Yoy -wow)

Dég: et A be an algebra .
a) e gHA) s o gerivation 4f Diz-y) = Dixd-y + = y) Y= ye A
b) [a partievtar case ] if A 4s a hA then DegliA) &5 a derivation
<f Dllx, 41) = [lx,g]-f[ac, _7)31. Vx.ae/‘l.

o DerlAl 45 the sat of al dervations of A.

Rew : De Z'DcrtA) 45 .nam.e.d. a durtvakion b.g a.na.loay with the xulbn-ia
role _(fua)" = 3'«3 . 3’3' ‘ior. .@uneh‘bns.'
Wﬂl oZet A be  _an augebra (or o LA). Then DeclA) us a
LCcsuba.lcaLbra cé’ aL[m.

ﬁ%&, £, Der(Al us a veckar subs pace
(D, % BD, ) (-4} = oD, 1x-4) + D, (x:y4) =
x [.D;{#ché + :c“.‘:".fa!_.‘ +2.f.»[D;l=c3% + xl)zta)]
¢ (oD + B8P3ty )y '+ mlox Dy + B Datgh)
&) .2, ey =(DeD; =DeDy ) iy
= D(Dptmg) - '.th'D.L:c'a)) #D,fD,lxla-r DC'thsl)'Iz.(.D,txuf_xI.lg)ﬁ
=..:!>.(D,axmd +'32Lacm._131 + _.'.D,t_:;:)_li__tsl + .':c.f!?,(tha.).) 3

F \Z
= [.-Du'Dz-.I (=) 'd + X ['])H‘D;.} lﬂ! Y Sl‘d eA = [D, |bz] €)¢flﬂ) ]



EEEEEEE T el
_d‘%ébf&dl.n'c.t_ .

 Rem:  Dec(A) 45 o LA,
R | bl P [ A LAl

Ex: et A be an abeian LA,
| Der(A) = al(A)
A.a" De SHA) {L'xsﬂ ‘= 3(&1 ] + [ac. lHl]
Exi _i_i_:_&LA_'_Ee..cziL- € ﬁ_ _[ Lt
' Diey = ._a“ep 0.,, € | md 'ch,_) y 'd,,e,_ t Q;€a

Ll l Dile.e1) =[Diene, ] : le, Dear] = ase, +a,e,
4 | 'D(g Y [= a“ct % a_zz Cz_ = 0,8 "l' Qa._zz_ez
% a,=a, =0 EEEN
L Dimd _:ocu__a_u [ .ls
S . m—&-r;‘{;—m—-tm : ‘.:!J,tc.lgt_a._; 'D,'u:i.l_:_e,_

EEEENP I Y VAR P AR NN
| m:f),[a; = Le,, 4] V.ge AL LTI
D s be,ul Ny ed
8-, et | Abelol 1Al and s eA Then lod_ & ‘aLLM t@s adjacnt
| map) 45 e mar map s.J:_.__._ ::3 =[ac.3] uaeA

Thud; od_ & Der(h)
CPesfsad ( Ea.m =[x fyla1] =l - E[ad.z] 21 = LCauyl 2] *LL2,xd,y)
-[[::..31 21 * [y (=01 "[ad g, a.] *['d:adlil] |
V:r..% e A R S S 8 S A O e ™1



:Deu‘_’ Lot A b= a 'L.A aw:. D e Dertd) «s an iner dercvabion
= Lxy] V‘d eA .(:)_s ad_)

ouherwcsa'.b (s MMM |

Ex : A diw A=2 l:c“é;_l zle, | lall urivations are cnner
if A us cpewan , D 45 inner only tf De=o

Ex

| |

; Idan.!g : lred | dwpsitantl |

;')é@‘ Lt A be o LA and Tc A be o veetor |$Qbspu.c<:.. Txan|
| .td.ta..Lc‘chA .er L 53&‘1’ V.:c_e.A rdEI__.._.
_Ldeal of A -Lf :Dtst.I V:De?bcrml -l geI

T a ;ham:.l:en.ahc
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Deg Wt Wlba bl Al
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a) .L-ﬁ_c-r:_LI',.J'J 45 an okl / chmac.tcrtstm I.C(.Iﬂ.l
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“-L-.ur._x]_ = ad L2ch =_..2. od (:f-l:dh.?.'ij) Z(fada,.?.:l-rfg,.adé,)

i - A
o.dl31=[w H.]e:r and cxdlarwthdéﬂ'
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_@_!gc‘bn-_ ae Lie:

e &g _meér [.A.lfqg.br;as 3
m | e‘/er\/baavcctorsmcc [omraf«cldﬂ‘) a.mdw-ﬂc\f
| ba a vector subspace . Then the relation M defuned ao :
H i
Ll L] leay & =ac.-§. e W  4s a reation of equivaience
L L | L ViR, [ | | b 1 | !
[ wfae, wfy o g¥m; wly e » xte |
I :De& | 5::::_:;‘ {.Ade V| Y- xeWY us an a:'uwn.f.mca elass
) Rem: | ()Y a5 an olﬂ’mc sbb_spacc_- T
e ey A H |
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.n.s o vector | spoc.é LI T ] 1
|
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| | | . | Lo o (-
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I e W
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M} Tﬁc. Le bmﬁ.ﬂ&: s d:fi:ru.cl E.orr:&):ha.
Lx) = dxz) |, (Jée) = 4-%:)
“’“’“‘6]) = {[a,4dyt [x a::,ud.] >
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_| Mg G |
= {ll=uzad ) s = L NS TEN +_-.- > =0
A

LS b.n.u.nco.r , anti - S&mmctn.c

e e e e

F ; | |
le 23.10.\9
Lie aﬁebra, ﬁ.ommrpﬁ.;smg._:_ .

¢ At Aand & be LAs . et § be a linear map between A and 8

3 is o k.g algebra. anmﬂgkm 46’ 3( [ac;g]) * [31.1;! J"lﬂ\]
Vr...nﬂ e A
a° As e | $p__rg. mmtpﬁxsm A ‘3 & ba.Jcchvc and

‘8 L3 o | e .aj.cﬂc_bro.. .Romu_
fi‘ﬁ.ua. Acd (8 lark | dodulodsBlel LA | ALB) |
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an  csomorpflism. .
'un.n. o Le o.laebrau ﬁommrp%m _doen nok Rove to be dnjective
o sutjeckive |
Rew:  4f AxB | tRew dimA = cim 8
Exi a LA A, W T be an 4ol of Al L+ T:A = A/t
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| il Yz
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ﬁlcac‘bm de Lie :

| lE:F.;- Al=|2- fwh | | Ee.,c,_] -.e L || |
8- sua,e) |, {efhl, I'_c,ch -R L IRelzge (R {1--3
Y. A— 8 a lnear map swch tRat
JHAEEE SN Y Y
P(Le e ]) = $(e,) = e

S —

g [Cujcz]) = :'_["tﬂe.) ‘Plez)] [ ﬁ.lﬁ-.l ¥ "L(Zc:)

ey,

AFls .a.rujccbwc but  not | sur_,ch.ve:

o E:: ; A= SL l 24 [ )

| &'(cl: W: A—— A b o unca.r ma.p such thak:|
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|
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B=: Atsln@) , §ixi— =t & o lA cummorhiom.
B Alf:r.eA (=9 Ertx: o so b-f-v €)zb| D ~eteA | P2
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Rem : ‘geﬁ .=
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det Y be o lineas map : x r——-» HxH™'
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c Y Moe M~
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:Tﬂng.{_,.l'-g ic.l: A be ca. LA, Ie ./LCru:.ar wap ad: A—-——-—}])c'v,rm)l

8c\rcn. ba adix) = ad (= [:c.']) 45 a Ue cdaebrcg
‘Romomrp&t:sm.

Paofi, ad_ € Det(A) (HRud)  tafe 2 e A

a.d([:c...-la%).tt} = O_Ld[x..;&i = [ [, 41,23 =

-LLy2 ) - Lisla , "dj = [k La.z]] ~ Ly l= 1]

ad,, (ad 1) - .oda(..adx_m)
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Dec(A) | N Det(A)
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é Der (A) a
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a) -‘-j’ -Jd.uldz & X(Xl =2 e, € X &E Yiag,) = .td, ; g_m,,i: 451
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4 K ) 3 ‘!;'35 ‘3 | ~ A ﬁ

£ bkafle X = A

Ly 4 4 € fiI) 5 xel sk ;fmmad
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HEEEEEEREE e 20.40.49
- Zet Aond B be LA ang 3: A= B b a le aulg. ’ﬂamamfpﬁ;:sm
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ﬁlaébn’_ de et

Ker P = {‘x’l At =°} ”{4"‘)] ‘f*"“-"’} ={ = I":ce,l(e.tf]:
= <@ 3 W is injchve
¥ as'swj:;h:vc (as a ma.p onto Im'ef). , SO

_A/uug —= Im¥ is o bijeckion ()

PULe, 1) = @(<L=yy) = P ((eiyd)
= L'aanu ) ‘.51.3:.]_ = ["Pl(ac))_l W((a))_] _
3 Y Us a LA Rommrp%m, (% %)

(k) = @ s | a LA csamorpﬁa.‘sm

Ex: A = gk(n.C) Wetbtr |, kA —> ¢
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. Rew: 4 we Rave <y e ki PP Y T
x> = < BEES
becowse b= = b (8FE) = EXpp o gy
o S T el = ={e ey leea] ra
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ﬁl%ébfe de Lie:

;R_eprcsan'b@tlbn.b 4

Rem : I."a V is a veckor space , then {_ba_rﬁm 2) 3L(Q] = (EndV)”
(e Lie bracBet L[Y,¥] = Yo 4 -We¥®) is o I|A.

I:!é'@., E/n A be o LA - [F) and V be o wvector space (over IF) .
A representabion gﬁ Aon ¥ 5 a [l a.lﬂ Romon . f‘-.A‘* %LW)
( That s, 'Jer xzeA , then fLx (s a Uneasr operabor ancl

the map x > f1E) 4 Unear and Plrxiyl) = [f!xl.ftaﬂ)

P@_QJ M"dﬁm\f,. Jf&mfcoo Eﬁm.f&kaﬁ:@ - climensional
B p o4s o foififel  mpmscatation Jif her p = {o}
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| | ekt o |
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plen = (o o) v flca) --(2 c',) £ A |l—— 3L((D‘)
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Ex: | A : Tene;l =2 ovee € V= QL2 polynomiale in 2.
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(perpl@ = 2z pl@)
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(Flc.,) P 2) = 2 pz)
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| = f.Le:.l.[?."") «| ftcz)(ni_") N
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Exe: A= sLi2,C) __'I:g.fl.. = R, [Rell= 2e |, Lﬁ.j’] & - 20
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[ sl N | (o] -.2 o S0
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C.\.d&Lcl_ = .'2.:: 7 oo
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_A_lcaebn: de LUe:

Pecf: @) by IS , Uertad) = 2(A) , p = od 'ugm‘.lﬂtfub
@  Ueriad) =l{o} @ z(A)l ={o}

) ba\:e.._ls,.u:c?‘: LS an chQJoS’A
»  elfer Wer p = {of | = P s‘.swul

of | Merp = A 3 P 45 the trvial repr.

a
! le CG.1.19
Hoduus -
Déy dat A be a .LAl over K . An A-module 13 a vecter space

Y over K bocac_tﬁu with a biincar map A*xV —

| {2z, v) b= 2= -V |
such. thak f-"-"l'dl‘\f = xlgi‘v)_-— 'dl::c-v) v a:,oa__i.A,ve\r

PR

“an A -module is a representation of A."

a) Zet A be o LA and Vo A-modole. Then fhe mop

i f A = al-(\f) acw:r.\. b"é fmw = :cv _is _a.  representabion
of A on V. | EEEEN

bl e A be a LA and p a rprsentakion of A on V

o vector space . Then |, the map AxV — V qéven bg_

XV = fll.:x".\v deé’l.‘n'co the structure a{ an A-module on V.

Roof;,

a) (x,v) > x-v (s bilinear, therefore -

S peedvit uva) = AVt uVz) = = APGEIN, F PRIV,

) Pt-ac's € 3!—(\1)
f{;\:c.t}nc,‘)v s (docgtluociyyiel | | = (_.\F.t_ac..}-l-/uj:.lx;.ﬂ.v. !
Y the mop X b p(x) s Uneas  VYveV | ]
. . pA



'.P:lL:ma':I)'v = Lxaylv = x(yv) - yle)
LT = [p=r, pupl = |
3 plizmyl) = [P pupl |

2 f s a representation oa(’ A on V

by \ry scuular ,  eaoter |

| o) | e :

Ex: dee A= RT(Q) ={(0)]
Recall : [;Eu.,c.z;l = @3, L@n,c,aj i Ecl.'i;ﬁl!.-j =0
et \ be on infladke - - dimentional | veck. space  with

= bG.DI:S é =. { :Vg_l..\fl jl...-.k
Conoteer @ bilinear mop | Ax N — V. sk | Jor neN,

EizVa = N Va=y (€2 Ve = 0 )
€ s Vo & Na+i
| ﬂ‘s VI'I- = Vl\

Yot 's  check  the bmcBet P;a@cg' fbr basts  veckors
_c-u_(:-‘s Vn ) 25 .clal.Cni.Vﬂ ) = C.'-u Vn -' '=l3 {hVI\"I.I) = nV.I\"l i nVﬂ‘l FO

= .Et."-'-.u..,. einl Va .

SouLL % EEu. c:.,,
,_Le‘—,_,, Vo) - @ leavn) = e, Vati = €, AVaas
2 (A+r)Va = nVa = Nn = & \Vn = [€2,e,;1Vn

W Vs an A-medult | e———— P4 A—"%L(V\ o

reprecentation .
det V = CLz] u.n..l'ﬁ. canonical basis (B = '{:.'.F.. 24 }
Tae - Plegy = 5.._ A ";z 2" = p 2"

f’lﬁ;a,) =2 ~—p 22" = 2™
| n
plegy =4 —~—~p d-2" = 2

_ T
we Rave [ Qa* 212l = Lyl lokaptt] | i
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Al %égn:} ae Lie:

Defi et A be a LA and V an A-modvle. A submedie W of V
& an (nvarient veckor sobspace |,
e: xveW VYxeA veW

= __Plx.w e W VxeA,veW
Rem ; {Cﬁr and V are oiu.umds. submociule qf V.

Ex: &t A=RI(@).

ﬂcca.u. : [Cu,f;u] = &3, [c;;,c,;.] = [C:alﬁ-zs] 5- o
ek p be the natural ttprcoenl:a.h.m cg"A e vz @8

[ I =] =1 o o o\ o |
Ciz 210 oo o™ e —Fg—n S o e
| e ee | a e

< oo o

Tabe R =_{v,.= (é) , v,_={?) RIVAL ﬁ)} tie canonical bascs of

2
v=¢*
.e'." ! -
-e_‘zv' = 0 _Clz__V,_ =V Gli.va, = =T T
e N
€3 Vi = O CxxV2 T 0 €3 Vy = Ve | \ 4
I | | I I ¥y Ya Vs
'e-|3 VvV, = 0 C‘a V}_ =0 6,3 Vsz V| .1 E_\Cs i

=
—ti

W, = span (v} and W, = span(v,Vz) ar svbmodouwn of V

Now conatcer  the adjoint representaktion p of A on V=4
linstead of the natural one)

The baois of A s 8={v,=c,3_, V, = c,g,v‘s:' Cas}

sV =l 0 Vg = o Sz Vy = o
eoV, = 0 €N, = O Ca Vsl = |V,
Ciz V) = O Cag V3 = =N, CapV¥y B ©
61% | ! !
-rmr b} W, = spanlvy) , W, = Span(vi,Vg)
v, v v

!_Jj and | W, = span (v, Vz2]) afe  submodvls f V. o 3\



'Ran | fa.uh.on . A :Submbowle can bc the Uneas spcm oj’ Unco.r
combinakions "—’S-’ 'bnsis veekors . 1 '

- Ex : K gﬁt A= SpOJ‘\ (e1C2) ..5...E_.E¢|_i¢;]’c..

Conolder | the rc_pmsm\:q&:on f 3 ;_on___v = C ? s.kl. 9(:.1 =[:;°f)
and piesy = (T4) lana taBe By ={y,=), v= (1]

E1V| = V) ' :.VL = Y-Z. /"\

i
Ll

L
| b L
€aV) = Val,| eV, = V, LA S R 7

W, = spanie,t+ ;) and. W, = spc:.n(c.,-c;) are  submociu
T kel N
Rem.: et f_ be the .ud(j.dcm:“ representabion :c:f a LA A,
A vector subspace T A s iwarant @ T (s an ideal of
A xey = Ft.ac'na = o,a;;tg\ =.Lacu31'e;I ' j’er xel, yeA
Def et A be o LA. An A-mocul V is simple 4f Vv #{of
and  iks  onw  Submodous are o} and V. |
‘r?u:. camom\d.m% reprcacnmh.on P4 Ineducible .
IE:F_.:F 4. Arua one - dimensional A - rqodnli:. s Simple.

2. Zee A= %3(C) and p:iA o gLV) , V= (QL:,

sk f(clz) =3§:‘E = = flcu) ; ‘E. i flcfs) = |

b —t—2 v is o simplt module
YoV —A, | v,

Def. Lt A'be o LA and V| be an  A-module Lkt ve V
a) We denocte W, := span (xac. xmV] myo, x;eA)

B} v s seid ko be cyaic f Wy = V.

p 32
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_@_%%é'bre._ de Le

o+
E:-g'.. ch.t: A= R'S (G:) . We take the same two representabions on

begorc. s | - . bl

| i 1 " . | i
| » e l . L -
v, is aach.c: ‘ no odcuc vector .

LTS
ay For cvch.s. ve V, the subspace W s a svbmodule

of V.

.Lz),_ V 5 suuple & c.vcrs.v..ev IS Cyelic .

et e Wy . Yen , u=av + Z Jxixiv * 2.‘,' aifec; (aejv) ...
la s ) d
‘C e
= XU = XXV 1-2 X a:.(:r.-,v) + Z'FJ o(.;pc(ac.t::,vn ... . EW,
e Wy e W J € iy

by B Tole veV , then W, is a sobmodule (W, #{o})

Femptl
Nv =V = y s Clacl.l.'.c x
L sSopposce ! V is | mok Stmp.l.:....

3 YRere (s W $ N o proper svbmodule

"l'&&cvc.ﬁl,uet.ld.v;fsadcwé = ME W, | !

€ W & W /4
5V is stwpw
@



le 13.11.19

Rem - Ais simple A s pof sénpa.
Y is simpi @ @
Vis no€ :
Eikpda | © ®@
3
@ p is the adjornt rep. of a snpi LA
(a submedvle (& an al )
@ Azgli2,C) , p & the natml ep.of V:C* .

® A=sL2,¢) , V=C3, __)=(°'§' : ) Rrzfo1 o
AR ey i at e T AT I T el
FJAEN (8 ERAL
V,= Span (v, v, ) ;,Vz= Span(vs) ESubmod}ulc.]
L Inal S na‘.'\"_[

' ® A s an abeian LA : (a,c1 =o, plen=_(22) . prea =(29)

0, = (;)} V, = (?J

Y, = Spaniv,) ; V, = Span(V,) not | simplL

D ne  mlakon between a. LA and moclle bccna simple

Rem : In @ and @ , v=V® V,

:Dé; e V be a veck. space | and V,,V,'_. be vector svbspace

| Wen V s the dimck som of V, and V, (V= V,®V.)
--"%g____c.va-a vé, V s um‘qgc.ud decomposed as v = Vv, tVvy; , V€ V.
v, e V, .

D det A be a LA and V be an A- module |V s _semiscmple i

. il n
i VEVeLe.. =@ v

L=

¢ whee Vi s a, sobmodule

scmple P 34
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:Deg_:_ I Vv ois se.mis.impu.. , then the corrcopondmca reprepentation
s compltely receible . |
Rem : 1'3 £ s o jumbe. - ciimentional compu.tcl.a recluctble
rep. (f='A*'V.oL&nV¢oo) then I:ﬁerctscutxasiso&’
V soch that praed 's a bleck -d.a:a.%onal matrixe WxeA .

Tofe a ! basis 5-"'[:.,.... .c.n.cm'ﬂ',.... cg_.-..}
L - . g |

]

basis of V,  bosis of ¥,
n
v=® V;

L=

Be 87 A
n flx)". | e

:ch AZA A 5 soid s be @ctcuc' 4f (ks adjotnt  repr (s

compmtcl.a readucible |

L

Ex: a) Evc:ru& simple LA
b) E\r.ana abcﬁlcm o.lcaebro. g
5‘{4:.,... ,cﬁ_} ; Vi."' Spa_n(:i) ) V=A=.® s
=)

¢y A=gb(n,C) = 5L(2,€) @ SpanlE)

e %Lln.(D) L ﬁtr.tx._).;E i éb‘lxl-E
[

=~

€ SL(H[C)

Def det A be a LA . An A-modvle VI (s indicomposable a.g"d'ﬁa.o

no non- 2erd  submoduls V, and V, sk V=V, @ Vg

Ex: Every simpl A- module (s inclicom posable .




| ' o : |
Al | Lenesl = e, | pren = (o al , frea= (?:ct_) ; .u,:(;),\;z:l?)

V, Span| (v,) (s a stbmatine buotk VE VO ..

HGm A. (V.-Vz). Ll

a'(é.t A be o LA (over ) , et V, and V, be A-modulen .
A Lnear map J’ V=V, s a ﬁommérgﬁr_w of A-mocwiww
-Qr aal:c.v) = .:cJ’m VeeA VYvey, ||

}‘lt.':»‘n“,l (V.Y:) is the set /a veckor space of atll Komomarpfism of

A-modutes  V, and V,

fet A be a LA and V,,V, be A-moclulss .
Let fﬁ..Ham‘(V..Vz) then Eerj’ ts a submodule n V; and

Ing is a submodule  in Vy .

et | ve chg . Haen Tlxvl = .:r;fwl =0 D x.v e..Kch‘
B l»(r.-.r:f (s an (nvariank veck. s.ubs. (= o sobmodule)
etk m € TIm§ , then Fve V,: s.k ﬁm =M D o -ac.j’w\-'-'é’tx\a')

'x‘.u. € 'I'“tf = I'ma’ is an invartank subspace
. . ) 7]

det Abea LA, det p: A~ gLIVI) | i A= ghlva)

be mpmo. , tRen p©, and P, am isomorpfire repr. Af [Mere

exists a b.g'acttve. ﬁammarpﬁa:sm af the A-moclous  V, and V,.

Lot p, and P, be Yinite - dimentional issmorpfic representation
tRen. [V,/2[V] 2V (ap a vector spoce). et jfs V,™ V; be

o bijective Rom  then f e %LWJ:_ v 5o 4 is represented
(_aigwc;crmsc a. basis of V) bﬂ an  Cnvertlble mn.tn.x. E. equ. virleat

‘a’la:«w = = 2 | F-f.l.:c)v.:. =ﬁt:=}F§r VxeA VeV, _,./'

& Fpe =pux) F Vexed & Frir F 'z p1m) Ve A
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.ﬁlgébre. cde Lie :
=8 A: [enecillsl e, V= 2
RE-} o 1i

fr i) = (a-c' 1 f.l.‘:z) < (‘3 <

Paten =422 .r,tc_z)-::(" ')_

e o

Soppose  p, and Pz are t‘Sa_marpR.tc. :

Fpiep - F™ = £ e |

Te(Fple)F™') = #__(l-,tcn) P Telpten) | 3
Dée (FplenF™) = .'Dé.f.--rf,_.ta,_s.) ¥ Mt.ffz o) | 7

b | beld | po |l ok bl

:lﬁm_& Hee| A be o LA (over F) . Lt V, and V, be simple A-modute . |

xl.t f& H.omAfVqu) &ﬁm a°-= 0O or .fl's an l.'samorpﬁ.t'sm,

- 33 B 21, Kerf is a submoctwle in Vv,
D eltfler Keef = v, 3 $=0
Cor Kerf zfo} I f #{of  ang by thm 21
T.'mé’ 5 o svbmodule (n V, = T 'é’ =V,
= ‘g s bijective = ‘3Ls an_.usomorp&:sm | 7
Mm 23 : ( Sehor's  Lemma )
fet A be a |A over € . L 'j: be la (fcmte—mm_maom
Ureduelble | rep. oJ" A on a vect. space V. Zec 3’6 ai-tv)
sueh ERak g = Fl=r-f Vxed
Wen there excsts A€ C sk $=2 .
[E-:‘-.:_Cvm.ml:ha, f Alis a 3"1':"" - dim 'sr:mpu.. A-moduvle and
§€ Homy (V) 3X € € sk Yz hid )




m .‘Jis. repreoentect bla& campu.:c mal:rcx‘._.F..._
THen A e V and INEC sE F-uL =i
See Wa{veV|Feeav) | W#{o}
ToBe veW ,xecA an::w _='f1=c; Fv = pE)dv = Aplaev
i ftm-ve W = W s a.ﬁubma.dut:..aé’\! > W=y

3 F=2E @ $=>id

Wi
dov p be a §inibe- dim. Grecueible mp of o Compux LA A

_Eieh we Z(A) , then le'J = A-.::&

‘E& S=!: 'f = fu.o-) L'cuﬁe x €A .a°ofl.ac.\ e f’c.am(]'-.’: = l‘_f-ﬂu_:-t P ]

e 'ﬁ([;v-,x_j)' =gy
G
> VxeA j’fixl = f""”f =) 3’5.‘\-Cd

1Bt | Am n"'{B.(E) 'Ec,,_,.cn] = ¢.!3 | [{I:i,5 . cz;] = [ﬁ,z,c,sl =0
et p-be the nabural rpr. | _ |
Ren  ples) = (gg ;) bue e, € Z(A)

o oo -
| .-/-/’..,'_\ /"f‘\
= £ s nok  ireducible ,_ [ ;ﬁf 4 +

de 20, 1.19

 Me  Udiing farm. :
Def; et A be o LA. A bilinear Jorm B: AxA— [F .

a) 5....6:;...._58%.:_.4‘.{_.3[&.31 = 5{8.::'.) 4 acna eA
| ,h; L in&:a.riant- g" 3(1&;.33,2)' = B.f.acllarﬂ) Vac_,lal.iG.A &

p 38
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Def  det B be o symmetric bilincal fom an a A A.
o), Zet WcA then £={xeﬁ.‘ Bu:..u&) X} Va_ew‘]
Rem: Tn %cnaal Wn W F A
b) Kch_='£={xe_A| 3{:.\:,%)'-‘0 ?Vaeﬂ_}
ey 8| i nan:—.dqcnero.tc i Wer B = {a} |

Thm 26: Het B be an invariant symm. bilineow .Sorm on a LA A,
a) it WecA . Then Wt @ a vector .:ubspaa.qf'h.
b) it TcA be an iceal . Then I'L s an tdiel qf’A

s

P

) At x € W ond Y2 e Wt = B(x..\ay.t%.) = A By
* Bix,2) 20 & W' is a subspace . -
ekt x € I'L, kake y e A and 2 eI

io
o~

B(L:n..nal,&.) = BLx,E%.E]) = 0 .VaeI-
d —
i |
3 Lx..\éj e T - ¥ 4 e A
_Rem :, et A be o stupu. LA . et 8 be an invasiant
symm. bilknear é’cxm on A. Then cither B=o0 or
% s pon- dcacn‘craﬁc |
[ Thowedl :  KerB | s an ideal of A
3 Ker® =A » B:=0 |

or = Ket & = O = B non-c:lci% )

Y 26 ; Lot A be a LA. ek p:A— V) be o fenite = dimensional
cp. of A, Sct &1::.31 - 'T?f_f:_lxijelgl)., then B 5z an

tnvartank Sgmm. _biknear 'derm c,(f A_
| t a4




Poof + B 'sammucc.: Tlab) = Telba)
Blis bilkkneas : | se F Pix) isla Lnear map ant T s Uncar,
Tvarant i Sil=yl @) = Tr(PlI=iyd) fie))
| = T (L= Liyl) PL21)
= Tel[prarpuyp - pup Pl ) i)
= |Tr (pra=rpuppiar - PreIPLY) 1))
T (piae) ( Pla)fii) = PRI ))
bl et Fodel] Tr'-(ﬁtac}(fl[gﬂ))
I I 0 I S = Bfx, [cd.a] )|

;'II

Ex i A=3L(Hn¢) Jt'cbf be the natral  reer.
le.t&) = Tr[::c:ta) .
| B 1s | net d.t.%ene.mtc: t | x eh tobe .3 = = 56&

Sic,y) = Telmex®) = b :cgtac:"‘)Ju =2 1x=gjl? = o
. L7 ] O N N Gy F
& x=o0

DcJ" Zet A be o lA. a'i'cb_f’=o.d.b¢th¢ad_‘oml': rc.prog'ﬁ

Ten Kl:r.ua) = TFlads oda is  the  Killing ~§om f A

Rem Ig 2(A) # {o} | tRen 2A)c Kerk # & 3 Kis digensrake

I

Ear:. A=_%L(n_.£). =) 2(A) 4“'_{°¥:_ so K s deaencral'i':

Thm 23 : det A be a compux nilpatent LA .
Men K=o. [ Kiziy) =o -vx._g eA)
Profi,  Suppse Ko 2 3x e A sk Kixx) Z20.
| 1 | Thoed s Af Kimx) =0 Yx e A D Kix+y, xry)
= | Ktsey= 4-_2.!4(:;-:31 + b(._cidud!' B Kiscui) = @ V_.:c...% €A

2 WKk=o0 })

p 40
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Alacb-e de Lic:

taBe xe A st Kix,x) 20 = brlad ad.) # O
= ad,. ad_. ﬁn.n. at oot one cc%mvccbora with :cacumwc At o
2 ad.. ad_. llai L )ud A :p.o (= _Lﬂ?a'jx-'a.'-l-" = 4\3_ =D __[__a_:.la_".l 4o
s L L. | € Au)
$ Lac, [, 124101 = Ar=iq1 Lo Lomife  Lmiy1T)] = a2y
_ € Aix)
3 Ag # 1oy V&R
3 A is nor nilpotent %
#
- Thm 28: ( Cacban's jcrsb criterion ).
- A LAA s solvabe & A'c Ker K
(L | I<l:=.31 o VYx e A! VaeAJ
*E:i:' : A: [enecal = e . | (é) .Cz g (?) d Al = Spanl(e,)
¢ o-) i o o)--
Cl.dcl = (Q ' ﬂ.dcz i | S 1 o
| i = o © _ o .~ ]
xe A, yeA ,adx«(**). ,ad.a-(* a)
o o6 :
Flad,-ady) = T« o) = o
. . 3 A'c Kar K 3 A s solvable
N ‘ﬁ - ( Kiene) K‘Guﬂ:\ ) N (d' o)
T Kies o) Kiez,ez) | o I
The kum% makrix .
The  Casimir Operator :
I'ie.mma. : et B:NxV— C be a symm. bilinear form on a vect,
space. V., Ak::t @ [ EJ"S matrix (@'J =.8(c|':,cj})
ot @, o0 be o bases of V. |

B s ncn-_d.uacnc'ra‘n: & det R #o0



- @ (Bu:-.c.\ - - Bieyen)

ey . | !
glﬁmﬂl) ol il _Elcmch{ [ [ 1

l?dct @ = k] Thcrausqf@mt. Lin. depend.
_adle @€ st o= Z)« Slc‘.cgi vE (= gll }a,cg)-avﬁ

| H ve KerB Ll L veV
Def: L lA be oA | Lot E 5{51,.._,__.;_:&3 be o basis of A. Suppese
Hak the Kuing of A & ron- degencrate. (det K #0)
Seel e =5l ) I ‘k ]chj L EY=lelleg ) s the
- dual_bosis of A |

R:ms Kiefeg) = K(Z.-..("R:S c.J eg )= J,Za.' (.‘E").‘f Kiejieg)
AEmm (RTR) g ® £y |

Def:, Her p: A= qV) be o a°o.n.ch-. dimensional repr of A, then
| 3" fte.)flc. ) is e Casimis

L=

1cl & %LW)_ %L'VGT\. bqa C=

ggcuko[ [ asseciated  bo f )

o) Cle HomA(V.V) (Cfta:)=fu==3c: VaceA)
b J.f f= a.d then &C=n

| | I ! — 4h
a) Llab,e]l = abe ~cab = abe -acb + acb -cob = albel + fowelb

n-|

*5\\  Le: -,.c\;] = Zm c:;" dol | L1 11 [ ] le 23.10.19
ThiiE m | |
BN [efle,] (= Zma. F Ll
} | C'l';: = K‘ Lei, e, C-m ) ; K( Sy Laksﬁ:\.].) =
N 'I-"}'\ i I | | B I I
.I }}\: f oo s K(‘-‘-n Ec"‘ leK] ) = =C :'“K
S s n _ . |
{! Ll C.p::.‘_)i-_)m.ek)i B = _[C_;fld‘ K\ = | (f’k’") 'Efl"" ), ftcﬁ.])
o - |

_ ;I:fmgﬂ],r’.lck)l Fac,;xl) Z Flc,;fn:e, el « F(Emlc;ig_ﬁ‘c"
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n

pieg - pleac = fepieal
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€

| m _y_._.i_ Q_"_,_ q- __hdn"‘lb—!—_val‘=+%_) | Vi— =/ (c'} } '

T P"c"'(a”. IS LS[_-”Q =N lpﬁl"'_.

| \d o/ |
o iue_ le Q. .Tn.mpu. TsLl‘Z G.‘i‘.\— qu.u
I | | 2
| |

| I T 1 t | |
trivial repre dmhz;m| | li ||
=2 . |
|

. |
e LS °‘. aﬂu.pu._ '.sLu'.ml-'moalulﬁ . : |

] ‘/’_ | = i T .i'__'_'_
(o) E _\\?’*‘\I m|&a.|uh

PRI |lﬂ| 4 amLsuz 'Cl ]
L B | L ol tl Lo dedald I* L S
}M | \—-—r/ | (no praper _mLarmnE .subspg.tg)

i_%Ll f po Ll%d’.) -bchN)
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T e A
L | - N | | A S (N O | 0

_,cu_ ve V , V2O s é.“mcl__
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